Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ulli Englert, ${ }^{\text {a }}$ Eberhard Matern, ${ }^{\text {b }}$ Jolanta Olkowska-Oetzel ${ }^{\text {c }}$ and Jerzy Pikies ${ }^{\text {d }}$

${ }^{\mathrm{a}}$ Institut für Anorganische Chemie, RWTH Aachen, Prof.-Pirlet-Straße 1, D-52074 Aachen, Germany, ${ }^{\mathbf{b}}$ Institut für Anorganische Chemie, Universität Karlsruhe (TH), Engesserstraße 15, Geb. 30.45, D-76128 Karlsruhe, Germany, ${ }^{\text {c }}$ Zentrum für Funktionelle Nanostrukturen, Wolfgang-Gaede-Straße 1, Geb. 30.23, D-76128 Karlsruhe, Germany, and ${ }^{\text {d Department }}$ of Chemistry, Technical University of Gdańsk, 11/12 G. Narutowicz St., PL-80952 Gdańsk, Poland

Correspondence e-mail:
pikies@altis.chem.pg.gda.pl

Key indicators

Single-crystal X-ray study
$T=233 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.014 \AA$
R factor $=0.043$
$w R$ factor $=0.134$
Data-to-parameter ratio $=22.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Bis(μ-di-tert-butylphosphido)bis[(triethylphosphine)palladium(I)](Pd%E2%80%94Pd)

The title compound, $\left[\mathrm{Pd}_{2}\left(\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{P}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{15} \mathrm{P}\right)_{2}\right]$, has been obtained by the reaction of di-tert-butylphosphine-phos-phanylidene- σ^{4}-di-tert-butyl(methyl)phosphorane and bis(triethylphosphine)palladium(II) chloride with sodium naphthalide. $\left[\left\{\mathrm{Pd}\left(\mu-\mathrm{P}^{t} \mathrm{Bu}_{2}\right)\left(\mathrm{PEt}_{3}\right)\right\}_{2}\right](P d-P d)$ is not a primary product. It crystallizes in space group $P \overline{1}$ with one molecule in the unit cell. The molecule has a centre of symmetry at the mid-point of the $\mathrm{Pd}-\mathrm{Pd}$ bond.

Comment

Di-tert-butylphosphine-phosphanylidene- σ^{4}-di-tert-butyl(methyl)phosphorane, ${ }^{t} \mathrm{Bu}_{2} \mathrm{P}-\mathrm{P}=\mathrm{P}^{t} \mathrm{Bu}_{2}(\mathrm{Me})$ is a convenient source for the di-tert-butylphosphine-phosphanylidene ligand ${ }^{t} \mathrm{Bu}_{2} \mathrm{P}-\mathrm{P}$ (Fritz \& Scheer, 2000; Olkowska-Oetzel \& Pikies, 2003). Until now only the $\mathrm{Pt}^{0} d^{10} M L_{2}$ metal centre was found to be capable of stabilizing this ligand (Krautscheid et al., 1997). Despite having many quite similar properties, the Pd^{0} $d^{10} M L_{2}$ centre does not stabilize this species. In the reaction of ${ }^{t} \mathrm{Bu}_{2} \mathrm{P}-\mathrm{P}=\mathrm{P}^{t} \mathrm{Bu}_{2}(\mathrm{Me})$ and $\left(\mathrm{Et}_{3} \mathrm{P}\right)_{2} \mathrm{PdCl}_{2}$ with $\mathrm{Na} /$ naphthalide, crystalline $\left[\left\{\mathrm{Pd}\left(\mu-\mathrm{P}^{t} \mathrm{Bu}_{2}\right)\left(\mathrm{PEt}_{3}\right)\right\}_{2}\right](P d-P d)$, (I), was isolated, among other products which could not be fully characterized, instead of the expected product $\left(\mathrm{Et}_{3} \mathrm{P}\right)_{2} \mathrm{Pd}\left(\eta^{2}-{ }^{t} \mathrm{Bu}_{2} \mathrm{P}-\mathrm{P}\right)$.

(I)

The molecular structure of (I) is shown in Fig. 1. There is a centre of symmetry at the mid-point of the $\mathrm{Pd}-\mathrm{Pd}$ bond. To the best of our knowledge, only three similar examples are known, viz. $\left[\left\{\mathrm{Pd}\left(\mu-\mathrm{P}^{t} \mathrm{Bu}_{2}\right)\left(\mathrm{PMe}_{3}\right)\right\}_{2}\right](P d-P d)$ (Arif et al., 1987), $\left[\left\{\mathrm{Pd}\left(\mu-\mathrm{P}^{t} \mathrm{Bu}_{2}\right)\left(\mathrm{P}^{t} \mathrm{Bu}_{2} \mathrm{H}\right)\right\}_{2}\right](P d-P d)($ Leoni et al., 1992) and $\left[\left\{\mathrm{Pd}\left(\mu-\mathrm{P}^{c} \mathrm{Hex}_{2}\right)\left(\mathrm{P}^{c} \mathrm{Hex}_{2} \mathrm{OPh}\right)\right\}_{2}\right](P d-P d)$ (Sommovigo et al., 1994). The $\mathrm{Pd}-\mathrm{Pd}$ distance of 2.5782 (9) \AA in (I) is slightly longer than in $\left[\left\{\mathrm{Pd}\left(\mu-\mathrm{P}^{t} \mathrm{Bu}_{2}\right)\left(\mathrm{PMe}_{3}\right)\right\}_{2}\right](P d-P d)(2.571 \AA)$. The $\mathrm{P} 2-\mathrm{Pd}-\mathrm{Pd}$ angle of $179.95(6)^{\circ}$ in (I) is similar to the $\mathrm{Me}_{3} \mathrm{P}-\mathrm{Pd}-\mathrm{Pd}$ angle in $\left[\left\{\mathrm{Pd}\left(\mu-\mathrm{P}^{t} \mathrm{Bu}_{2}\right)\left(\mathrm{PMe}_{3}\right)\right\}_{2}\right](P d-P d)$ $\left(178.4^{\circ}\right)$. For related complexes with bulky phosphine ligands, a significant deviation of the $R_{3} \mathrm{P}-\mathrm{Pd}-\mathrm{Pd}-\mathrm{P} R_{3}$ moiety from linearity was observed. For $\left[\left\{\mathrm{Pd}\left(\mu-\mathrm{P}^{t} \mathrm{Bu}_{2}\right)\left(\mathrm{P}^{t} \mathrm{Bu}_{2} \mathrm{H}\right)\right\}_{2}\right](P d-$ $P d)$ the ${ }^{t} \mathrm{Bu}_{2}(\mathrm{H}) \mathrm{P}-\mathrm{Pd}-\mathrm{Pd}$ angle is 173.2° and for $[\{\mathrm{Pd}(\mu-$ $\left.\left.\left.\mathrm{P}^{c} \mathrm{Hex}_{2}\right)\left(\mathrm{P}^{c} \mathrm{Hex}_{2} \mathrm{OPh}\right)\right\}_{2}\right](P d-P d)$ the corresponding $\mathrm{P}-\mathrm{Pd}-$ Pd angle is 170.5°.

Received 9 May 2003 Accepted 16 May 2003 Online 31 May 2003

Experimental

The title compound was obtained using standard Schlenk methods under an atmosphere of carefully purified nitrogen: 4.1 ml of a 0.18 M solution of Na /naphthalide was added dropwise to a solution of $0.144 \mathrm{~g}(0.439 \mathrm{mmol})\left(\mathrm{Et}_{3} \mathrm{P}\right)_{2} \mathrm{PdCl}_{2}$ and $0.059 \mathrm{~g}(0.174 \mathrm{mmol}){ }^{t} \mathrm{Bu}_{2} \mathrm{P}-$ $\mathrm{P}=\mathrm{P}^{t} \mathrm{Bu}_{2}(\mathrm{Me})$ in 6 ml tetrahydrofuran. This solution turned slowly dark while it was stirred for 2 d at room temperature. The reaction mixture was evaporated to dryness in vacuum and naphthalene was sublimed from the residue. The residue was dissolved in $\mathrm{Et}_{2} \mathrm{O}$, filtered and recrystallized three times at 229 K from $\mathrm{Et}_{2} \mathrm{O}$, yielding a small amount of $\left[\left\{\mathrm{Pd}\left(\mu-\mathrm{P}^{t} \mathrm{Bu}_{2}\right)\left(\mathrm{PEt}_{3}\right)\right\}_{2}\right](P d-P d) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 1.86$ $\left[\mathrm{PCH}_{2}, d\right.$ of quartets, $\left.{ }^{2} J(\mathrm{H}, \mathrm{H})=5 \mathrm{~Hz},{ }^{2} J(\mathrm{P}, \mathrm{H})=3 \mathrm{~Hz}\right], \delta 1.52\left({ }^{t} \mathrm{Bu}_{2} \mathrm{P}\right.$, pseudo- $t, J=5.7$ and 6.1 Hz$), \delta 1.12\left[\mathrm{CH}_{3}, d\right.$ of $t,{ }^{2} J(\mathrm{H}, \mathrm{H})=5 \mathrm{~Hz}$, $\left.{ }^{3} J(\mathrm{P}, \mathrm{H})=7.6 \mathrm{~Hz}\right] ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 284.9\left[\mathrm{PEt}_{3}, t,{ }^{2} J(\mathrm{P}, \mathrm{P})=\right.$ $38.1 \mathrm{~Hz}], \delta 14.6\left({ }^{\mathrm{B}} \mathrm{Bu}_{2} \mathrm{P}, t\right){ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 34.2\left(\mathrm{P}^{t} \mathrm{Bu}_{2}, \mathrm{CH}_{3}, t, J=\right.$ $6.1 \mathrm{~Hz}), \delta 30.9\left({ }^{(} \mathrm{Bu}_{2} \mathrm{P}, \mathrm{C}, s\right), \delta 23.5\left(\mathrm{PCH}_{2}, d\right.$ of $\left.t\right), \delta 10.2\left(\mathrm{CH}_{3}, s\right)$.

Crystal data

$\left[\mathrm{Pd}_{2}\left(\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{P}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{15} \mathrm{P}\right)_{2}\right]$
$M_{r}=739.53$
Triclinic, $P \overline{1}$
$a=8.9820(9) \AA$
$b=10.935(2) \AA$
$c=11.296(2) \AA$
$\alpha=114.15(1)^{\circ}$
$\beta=103.67(1)^{\circ}$
$\gamma=101.72(1)^{\circ} \AA^{\circ}$
$V=925.8(3) \AA^{3}$

$$
\begin{aligned}
& Z=1 \\
& D_{x}=1.327 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

$M_{r}=739.53$
Triclinic, $P \overline{1}$
$a=8.9820$ (9) A
b=10.935 (2) ̊
$\alpha=114.15(1)^{\circ}$
$\beta=103.67$ (1)
$V=925.8(3) \AA^{3}$
Mo $K \alpha$ radiation
Cell parameters from 24 reflections
$\theta=11-14^{\circ}$
$\mu=1.16 \mathrm{~mm}^{-1}$
$T=233$ (1) K
Cut fragment, red
$0.40 \times 0.25 \times 0.25 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4 diffractometer
$\theta / 2 \theta$ scans
Absorption correction: ψ scans (North et al., 1968)
$T_{\text {min }}=0.695, T_{\text {max }}=0.749$
4955 measured reflections
3623 independent reflections 3266 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.134$
$S=1.03$
3617 reflections
163 parameters
H -atom parameters constrained
$R_{\text {int }}=0.019$
$\theta_{\text {max }}=26.0^{\circ}$
$h=-11 \rightarrow 11$
$k=-13 \rightarrow 13$
$l=-13 \rightarrow 4$
3 standard reflections frequency: 120 min intensity decay: 0.5%

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.04 P)^{2}\right. \\
& \quad+8 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.003 \\
& \Delta \rho_{\max }=1.30 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.55 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1

Selected geometric parameters $\left(\AA,^{\circ}\right)$.

$\mathrm{Pd}-\mathrm{P} 2$	$2.2584(15)$	$\mathrm{Pd}-\mathrm{P} 1$	$2.3293(16)$
$\mathrm{Pd}-\mathrm{P} 1^{\mathrm{i}}$	$2.3240(17)$	$\mathrm{Pd}-\mathrm{Pd}^{\mathrm{i}}$	$2.5782(9)$
$\mathrm{P} 2-\mathrm{Pd}-\mathrm{P}^{\mathrm{i}}$	$123.52(6)$	$\mathrm{P}^{\mathrm{i}}-\mathrm{Pd}-\mathrm{Pd}^{\mathrm{i}}$	$56.45(4)$
$\mathrm{P} 2-\mathrm{Pd}-\mathrm{P} 1$	$123.77(6)$	$\mathrm{P} 1-\mathrm{Pd}-\mathrm{Pd}^{\mathrm{i}}$	$56.26(4)$
$\mathrm{P} 1^{\mathrm{i}}-\mathrm{Pd}-\mathrm{P} 1$	$112.71(5)$	$\mathrm{Pd}^{\mathrm{i}}-\mathrm{P} 1-\mathrm{Pd}$	$67.29(5)$
$\mathrm{P} 2-\mathrm{Pd}-\mathrm{Pd}^{\mathrm{i}}$	$179.95(6)$		

Symmetry code: (i) $1-x, 2-y, 1-z$.
Backgrounds were obtained from analysis of the scan profile (Blessing et al., 1974). All H atoms were treated as riding with fixed

Figure 1
The structure of (I) (Johnson, 1976), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 25% probability level and all H atoms have been omitted.
isotropic displacement parameters. The maximum electron-density peak is located $1.16 \AA$ from the Pd atom.

Data collection: CAD-4 Operations Manual (Enraf-Nonius, 1977); cell refinement: CAD-4 Operations Manual; data reduction: PROCESS MolEN (Fair, 1990); program(s) used to solve structure: SHELXS 97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1990); software used to prepare material for publication: SHELXL97.

The authors thank the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for support. We thank the late Professor Dr h. c. Gerhard Fritz for his support.

References

Arif, A. M., Heaton, D. E., Jones, R. A. \& Nunn, C. M. (1987). Inorg. Chem. 26, 4228-4231.
Blessing, R. H., Coppens, P. \& Becker, P. (1974). J. Appl. Cryst. 7, 488-492.
Enraf-Nonius (1977). CAD-4 Operations Manual. Enraf-Nonius, Delft, The Netherlands.
Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.
Fritz, G. \& Scheer, P. (2000). Chem. Rev. 100, 3341-3401.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Krautscheid, H., Matern, E., Kovacs, I., Fritz, G. \& Pikies, J. (1997). Z. Anorg. Allg. Chem. 623, 1917-1924.
Leoni, P., Sommovigo M., Pasquali, M., Sabatino, P. \& Braga, D. (1992). J. Organomet. Chem. 423, 263-270.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Olkowska-Oetzel, J. \& Pikies, J. (2003). Appl. Organomet. Chem. 17, 28-35.
Sheldrick, G. M. (1997). SHELX97 and SHELXL97. University of Göttingen, Germany.
Sommovigo, M., Pasquali, M., Leoni, P. \& Englert, U. (1994). Inorg. Chem. 33, 2686-2688.
Spek, A. L. (1990). PLATON. Utrecht University, The Netherlands.

