metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ulli Englert,^a Eberhard Matern,^b Jolanta Olkowska-Oetzel^c and Jerzy Pikies^d*

^aInstitut für Anorganische Chemie, RWTH Aachen, Prof.-Pirlet-Straße 1, D-52074 Aachen, Germany, ^bInstitut für Anorganische Chemie, Universität Karlsruhe (TH), Engesserstraße 15, Geb. 30.45, D-76128 Karlsruhe, Germany, ^cZentrum für Funktionelle Nanostrukturen, Wolfgang-Gaede-Straße 1, Geb. 30.23, D-76128 Karlsruhe, Germany, and ^dDepartment of Chemistry, Technical University of Gdańsk, 11/12 G. Narutowicz St., PL-80952 Gdańsk, Poland

Correspondence e-mail: pikies@altis.chem.pg.gda.pl

Key indicators

Single-crystal X-ray study T = 233 K Mean σ (C–C) = 0.014 Å R factor = 0.043 wR factor = 0.134 Data-to-parameter ratio = 22.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

 \bigcirc 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

Bis(µ-di-tert-butylphosphido)bis[(triethylphosphine)palladium(I)](Pd—Pd)

The title compound, $[Pd_2(C_8H_{18}P)_2(C_6H_{15}P)_2]$, has been obtained by the reaction of di-*tert*-butylphosphine–phosphanylidene– σ^4 -di-*tert*-butyl(methyl)phosphorane and bis(tri-ethylphosphine)palladium(II) chloride with sodium naphthalide. [$\{Pd(\mu-P'Bu_2)(PEt_3)\}_2$](Pd-Pd) is not a primary product. It crystallizes in space group $P\overline{1}$ with one molecule in the unit cell. The molecule has a centre of symmetry at the mid-point of the Pd–Pd bond.

Received 9 May 2003 Accepted 16 May 2003 Online 31 May 2003

Comment

Di-*tert*-butylphosphine–phosphanylidene– σ^4 -di-*tert*-butyl-(methyl)phosphorane, 'Bu₂P–P=P'Bu₂(Me) is a convenient source for the di-*tert*-butylphosphine-phosphanylidene ligand 'Bu₂P–P (Fritz & Scheer, 2000; Olkowska-Oetzel & Pikies, 2003). Until now only the Pt⁰ d¹⁰ ML₂ metal centre was found to be capable of stabilizing this ligand (Krautscheid *et al.*, 1997). Despite having many quite similar properties, the Pd⁰ d¹⁰ ML₂ centre does not stabilize this species. In the reaction of 'Bu₂P–P=P'Bu₂(Me) and (Et₃P)₂PdCl₂ with Na/naphthalide, crystalline [{Pd(μ -P'Bu₂)(PEt₃)}₂](Pd–Pd), (I), was isolated, among other products which could not be fully characterized, instead of the expected product (Et₃P)₂Pd(η^2 -'Bu₂P–P).

The molecular structure of (I) is shown in Fig. 1. There is a centre of symmetry at the mid-point of the Pd-Pd bond. To the best of our knowledge, only three similar examples are known, viz. [{ $Pd(\mu-P'Bu_2)(PMe_3)$ }](Pd-Pd) (Arif et al., 1987), $[{Pd(\mu-P'Bu_2)(P'Bu_2H)}_2](Pd-Pd)$ (Leoni *et al.*, 1992) and $[{Pd(\mu-P^{c}Hex_{2})(P^{c}Hex_{2}OPh)}_{2}](Pd-Pd)$ (Sommovigo et al., 1994). The Pd–Pd distance of 2.5782 (9) Å in (I) is slightly longer than in $[{Pd(\mu - P^tBu_2)(PMe_3)}_2](Pd - Pd)$ (2.571 Å). The P2-Pd-Pd angle of 179.95 (6)° in (I) is similar to the Me₃P-Pd-Pd angle in $[{Pd(\mu-P^{t}Bu_{2})(PMe_{3})}_{2}](Pd-Pd)$ (178.4°). For related complexes with bulky phosphine ligands, a significant deviation of the R_3P -Pd-Pd-P R_3 moiety from linearity was observed. For $[{Pd(\mu-P'Bu_2)(P'Bu_2H)}_2](Pd-$ Pd) the 'Bu₂(H)P-Pd-Pd angle is 173.2° and for [{Pd(μ - $P^{c}Hex_{2}(P^{c}Hex_{2}OPh)_{2}(Pd-Pd)$ the corresponding P-Pd-PdPd angle is 170.5° .

Experimental

The title compound was obtained using standard Schlenk methods under an atmosphere of carefully purified nitrogen: 4.1 ml of a 0.18 *M* solution of Na/naphthalide was added dropwise to a solution of 0.144 g (0.439 mmol) (Et₃P)₂PdCl₂ and 0.059 g (0.174 mmol) 'Bu₂P – P==P'Bu₂(Me) in 6 ml tetrahydrofuran. This solution turned slowly dark while it was stirred for 2 d at room temperature. The reaction mixture was evaporated to dryness in vacuum and naphthalene was sublimed from the residue. The residue was dissolved in Et₂O, filtered and recrystallized three times at 229 K from Et₂O, yielding a small amount of [{Pd(μ -P'Bu₂)(PEt₃)}₂](*Pd*-*Pd*). ¹H NMR(C₆D₆): δ 1.86 [PCH₂, *d* of quartets, ²*J*(H,H) = 5 Hz, ²*J*(P,H) = 3 Hz], δ 1.52 ('Bu₂P, pseudo-*t*, *J* = 5.7 and 6.1 Hz), δ 1.12 [CH₃, *d* of *t*, ²*J*(H,H) = 5 Hz, ³*J*(P,H) = 7.6 Hz]; ³¹P {¹H} NMR (C₆D₆): δ 284.9 [PEt₃, *t*, ²*J*(P,P) = 38.1 Hz], δ 14.6 ('Bu₂P, *t*) ¹³C [¹H] (C₆D₆): δ 34.2 (P'Bu₂, CH₃, *t*, *J* = 6.1 Hz), δ 30.9 ('Bu₂P, C, *s*), δ 23.5 (PCH₂, *d* of *t*), δ 10.2 (CH₃, *s*).

Z = 1

 $D_{\rm x} = 1.327 {\rm Mg} {\rm m}^{-3}$

Cell parameters from 24

Mo $K\alpha$ radiation

reflections

 $\mu=1.16~\mathrm{mm}^{-1}$

T = 233 (1) K

 $R_{\rm int} = 0.019$

 $\theta_{\rm max} = 26.0^{\circ}$

 $h = -11 \rightarrow 11$

 $k = -13 \rightarrow 13$

3 standard reflections

frequency: 120 min

intensity decay: 0.5%

 $l = -13 \rightarrow 4$

Cut fragment, red $0.40 \times 0.25 \times 0.25$ mm

 $\theta = 11 - 14^{\circ}$

Crystal data

 $\begin{bmatrix} Pd_2(C_8H_{18}P)_2(C_6H_{15}P)_2 \end{bmatrix} \\ M_r = 739.53 \\ \text{Triclinic, } P\overline{1} \\ a = 8.9820 (9) \text{ Å} \\ b = 10.935 (2) \text{ Å} \\ c = 11.296 (2) \text{ Å} \\ \alpha = 114.15 (1)^{\circ} \\ \beta = 103.67 (1)^{\circ} \\ \gamma = 101.72 (1)^{\circ} \\ V = 925.8 (3) \text{ Å}^3 \end{bmatrix}$

Data collection

Enraf-Nonius CAD-4 diffractometer $\theta/2\theta$ scans Absorption correction: ψ scans (North *et al.*, 1968) $T_{min} = 0.695$, $T_{max} = 0.749$ 4955 measured reflections 3623 independent reflections 3266 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.04P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.044$	+ 8P]
$wR(F^2) = 0.134$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.03	$(\Delta/\sigma)_{\rm max} = 0.003$
3617 reflections	$\Delta \rho_{\rm max} = 1.30 \text{ e} \text{ Å}^{-3}$
163 parameters	$\Delta \rho_{\rm min} = -0.55 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1

Selected geometric parameters (Å, °).

Dd D2	2 2584 (15)	Dd D1	2 2202 (16)
ru-rz	2.2364 (13)		2.5295 (10)
Pd-P1	2.3240 (17)	Pd-Pd	2.5782 (9)
P2-Pd-P1 ⁱ	123.52 (6)	P1 ⁱ -Pd-Pd ⁱ	56.45 (4)
P2-Pd-P1	123.77 (6)	$P1 - Pd - Pd^i$	56.26 (4)
P1 ⁱ -Pd-P1	112.71 (5)	Pd ⁱ -P1-Pd	67.29 (5)
P2-Pd-Pd ⁱ	179.95 (6)		

Symmetry code: (i) 1 - x, 2 - y, 1 - z.

Backgrounds were obtained from analysis of the scan profile (Blessing *et al.*, 1974). All H atoms were treated as riding with fixed

Figure 1

The structure of (I) (Johnson, 1976), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 25% probability level and all H atoms have been omitted.

isotropic displacement parameters. The maximum electron-density peak is located 1.16 Å from the Pd atom.

Data collection: *CAD-4 Operations Manual* (Enraf–Nonius, 1977); cell refinement: *CAD-4 Operations Manual*; data reduction: *PROCESS MolEN* (Fair, 1990); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 1990); software used to prepare material for publication: *SHELXL*97.

The authors thank the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for support. We thank the late Professor Dr h. c. Gerhard Fritz for his support.

References

- Arif, A. M., Heaton, D. E., Jones, R. A. & Nunn, C. M. (1987). *Inorg. Chem.* 26, 4228–4231.
- Blessing, R. H., Coppens, P. & Becker, P. (1974). J. Appl. Cryst. 7, 488-492.
- Enraf-Nonius (1977). CAD-4 Operations Manual. Enraf-Nonius, Delft, The Netherlands.
- Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.
- Fritz, G. & Scheer, P. (2000). Chem. Rev. 100, 3341-3401.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Krautscheid, H., Matern, E., Kovacs, I., Fritz, G. & Pikies, J. (1997). Z. Anorg. Allg. Chem. 623, 1917–1924.
- Leoni, P., Sommovigo M., Pasquali, M., Sabatino, P. & Braga, D. (1992). J. Organomet. Chem. 423, 263–270.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Olkowska-Oetzel, J. & Pikies, J. (2003). Appl. Organomet. Chem. 17, 28-35.
- Sheldrick, G. M. (1997). *SHELX*97 and *SHELXL*97. University of Göttingen, Germany.
- Sommovigo, M., Pasquali, M., Leoni, P. & Englert, U. (1994). Inorg. Chem. 33, 2686–2688.
- Spek, A. L. (1990). PLATON. Utrecht University, The Netherlands.